In vitro reconstitution of calreticulin-substrate interactions.

نویسندگان

  • J R Peterson
  • A Helenius
چکیده

Calreticulin is a soluble, endoplasmic reticulum-resident protein and a molecular chaperone for glycoproteins. We have reconstituted the binding of recombinant calreticulin to two glycoprotein substrates, vesicular stomatitis virus G protein and influenza hemagglutinin, in vitro. The binding was found to be direct and to require monoglucosylated, asparagine-linked oligosaccharides on the substrate glycoprotein but no other cellular factors. The binding could be modulated in vitro by incubation of substrate with purified preparations of the glycan modifying enzymes glucosidase II and the UDP-glucose:glycoprotein glucosyltransferase, thus recapitulating the regulation of calreticulin-binding by glycan modification that occurs in vivo. Using the purified ER enzymes and the recombinant calreticulin, an assay was established for reconstituting a complex, multicomponent chaperone binding cycle in vitro. We demonstrated, moreover, that the acidic C-terminal 62 residues of calreticulin are dispensable for substrate binding whereas further deletions inhibit substrate binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retraction for Lectin-deficient Calreticulin Retains Full Functionality as a Chaperone for Class I Histocompatibility Molecules

Calreticulin is a molecular chaperone of the endoplasmic reticulum that uses both a lectin site specific for Glc(1)Man(5-9)GlcNAc(2) oligosaccharides and a polypeptide binding site to interact with nascent glycoproteins. The latter mode of substrate recognition is controversial. To examine the relevance of polypeptide binding to protein folding in living cells, we prepared lectin-deficient muta...

متن کامل

The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo.

Calnexin and calreticulin are molecular chaperones of the endoplasmic reticulum that bind to newly synthesized glycoproteins in part through a lectin site specific for monoglucosylated (Glc(1)Man(7-9)GlcNAc(2)) oligosaccharides. In addition to this lectin-oligosaccharide interaction, in vitro studies have demonstrated that calnexin and calreticulin can bind to polypeptide segments of both glyco...

متن کامل

Reconstitution of interactions between the Src tyrosine kinases and Ras GTPase-activating protein using a baculovirus expression system.

Ras GTPase-activating protein (GAP) has been implicated in mitogenic signal transduction downstream of oncogenic and receptor tyrosine kinases. Previous studies have suggested that GAP is phosphorylated by oncogenic viral Src (v-Src) and that GAP is associated with a complex containing normal cellular Src (c-Src) in vertebrate fibroblasts. To investigate molecular interactions between the Src k...

متن کامل

Characterization of calreticulin as a protein interacting with protein kinase C.

A protein kinase C (PKC)-binding protein was purified to homogeneity from the Triton-insoluble fraction from rat hepatocytes homogenates. The protein was identified as the mature calreticulin chain by N-terminal amino acid sequencing and by its immunoreactivity with anti-calreticulin antibody raised against the C-terminal KDEL (single-letter code) sequence. The calculated molecular mass was 46....

متن کامل

Calreticulin recognizes misfolded HLA-A2 heavy chains.

Our studies investigated functional interactions between calreticulin, an endoplasmic reticulum chaperone, and major histocompatibility complex (MHC) class I molecules. Using in vitro thermal aggregation assays, we established that calreticulin can inhibit heat-induced aggregation of soluble, peptide-deficient HLA-A2 purified from supernatants of insect cells. The presence of HLA-A2-specific pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 112 ( Pt 16)  شماره 

صفحات  -

تاریخ انتشار 1999